Distributed Stochastic Approximation: Weak Convergence and Network Design
نویسندگان
چکیده
منابع مشابه
Convergence Rates for Adaptive Weak Approximation of Stochastic Differential Equations
Convergence rates of adaptive algorithms for weak approximations of Itô stochastic differential equations are proved for the Monte Carlo Euler method. Two algorithms based either on optimal stochastic time steps or optimal deterministic time steps are studied. The analysis of their computational complexity combines the error expansions with a posteriori leading order term introduced in Szepessy...
متن کاملNetwork Location Problem with Stochastic and Uniformly Distributed Demands
This paper investigates the network location problem for single-server facilities that are subject to congestion. In each network edge, customers are uniformly distributed along the edge and their requests for service are assumed to be generated according to a Poisson process. A number of facilities are to be selected from a number of candidate sites and a single server is located at each facil...
متن کاملStochastic Approximation and Transaction-Level Model for IP Network Design
We investigate the use of simulation and transactionlevel models for TCP in IP network design. More specifically, we focus on the transaction level dynamics of TCP and approximate it by max-min fair sharing. Based on this model, we formulate a network dimensioning problem as a nonlinear constrained optimization problem. The constraints and their gradients, which do not have analytical forms, ar...
متن کاملAdaptive Weak Approximation of Stochastic Differential Equations
Adaptive time-stepping methods based on the Monte Carlo Euler method for weak approximation of Itô stochastic differential equations are developed. The main result is new expansions of the computational error, with computable leading-order term in a posteriori form, based on stochastic flows and discrete dual backward problems. The expansions lead to efficient and accurate computation of error ...
متن کاملWeak convergence for a spatial approximation of the nonlinear stochastic heat equation
We find the weak rate of convergence of approximate solutions of the nonlinear stochastic heat equation, when discretized in space by a standard finite element method. Both multiplicative and additive noise is considered under different assumptions. This extends an earlier result of Debussche in which time discretization is considered for the stochastic heat equation perturbed by white noise. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2016
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2016.2545098